$\begin{aligned} & \text { y } \\ & \text { चुy } \\ & \text { \# } \end{aligned}$	䔍	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \\ & \frac{0}{0} \\ & 0 \end{aligned}$		
2	1-1	0.52	2	0.26
	2-0	0.48	2	0.24
3	2-1	0.78	6	0.13
	3-0	0.22	2	0.11
4	2-2	0.41	6	0.0678~
	3-1	0.50	8	0.0622~
	4-0	0.10	2	0.0478~
5	3-2	0.68	20	0.0339~
	4-1	0.28	10	0.02826
	5-0	0.04	2	0.01956~
6	3-3	0.36	20	0.01776~
	4-2	0.48	30	0.01615~
	5-1	0.15	12	0.01211~
	6-0	0.01	2	0.00745~
7	4-3	0.62	70	0.00888~
	5-2	0.31	42	0.00727~
	6-1	0.07	14	0.00484~
	7-0	0.01	2	0.00261~
8	4-4	0.33	70	0.00467~
	5-3	0.47	112	0.00421~
	6-2	0.17	56	0.00306~
	7-1	0.03	16	0.00178~
	8-0	0.00	2	0.00082~

Wikipedia: http://en.wikipedia.org/wiki/Bridge_probabilities

Probability of suit distributions in two hidden hands

This table represents the different ways that two to thirteen particular cards may be distributed, or may lie or split, between two unknown 13card hands (before the bidding and play, or a priori). The table also shows the number of combinations of particular cards that match any numerical split and the probabilities for each combination. These probabilities follow directly from the law of Vacant Places.

Probability of HCP distribution

High Card Points (HCP) are usually counted using the Milton Work scale of $4 / 3 / 2 / 1$ points for each Ace/King/Queen/Jack respectively. The a priori probabilities that a given hand contains no more than a specified number of HCP is given in the table below ${ }^{[1]}$. To find the likelihood of a certain point range, one simply subtracts the two relevant cumulative probabilities. So, the likelihood of being dealt a 12-19 HCP hand (ranges inclusive) is the probability of having at most 19 HCP minus the probability of having at most 11 HCP , or: $0.986-0.652=0.334 .{ }^{[2]}$

| HCP | Prob | HCP | Prob | HCP | Prob | HCP | Prob | HCP |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Prob

Hand pattern probabilities

A hand pattern denotes the distribution of the thirteen cards in a hand over the four suits. In total 39 hand patterns are possible, but only 13 of them have an a priori probability exceeding 1%. The most likely pattern is the 4-4-3-2 pattern consisting of two four-card suits, a three-card suit and a doubleton.

Note that the hand pattern leaves unspecified which particular suits contain the indicated lengths. For a 4-4-3-2 pattern, one needs to specify which suit contains the three-card and which suit contains the doubleton in order to identify the length in each of the four suits. There are four possibilities to first identify the three-card suit and three possibilities to next identify the doubleton. Hence, the number of suit permutations of the 4-4-3-2 pattern is twelve. Or, stated differently, in total there are twelve ways a 4-4-3-2 pattern can be mapped onto the four suits.

Below table lists all 39 possible hand patterns, their probability of occurrence, as well as the number of suit permuatation for each pattern. The list is ordered according to likelihood of occurrence of the hand patterns. ${ }^{[3]}$

Pattern Probability \#	Pattern Probability \#		Pattern	Probability	$\#$			
$4-4-3-2$	0.2155	12	$5-5-3-0$	0.0090	12	$9-2-1-1$	0.00018	12
$5-3-3-2$	0.1552	12	$6-5-1-1$	0.0071	12	$9-3-1-0$	0.00010	24
$5-4-3-1$	0.1293	24	$6-5-2-0$	0.0065	24	$9-2-2-0$	0.000082	12
$5-4-2-2$	0.1058	12	$7-2-2-2$	0.0051	4	$7-6-0-0$	0.000056	12
$4-3-3-3$	0.1054	4	$7-4-1-1$	0.0039	12	$8-5-0-0$	0.000031	12
$6-3-2-2$	0.0564	12	$7-4-2-0$	0.0036	24	$10-2-1-0$	0.000011	24
$6-4-2-1$	0.0470	24	$7-3-3-0$	0.0027	12	$9-4-0-0$	0.000010	12
$6-3-3-1$	0.0345	12	$8-2-2-1$	0.0019	12	$10-1-1-1$	0.000004	4
$5-5-2-1$	0.0317	12	$8-3-1-1$	0.0012	12	$10-3-0-0$	0.0000015	12
$4-4-4-1$	0.0299	4	$7-5-1-0$	0.0011	24	$11-1-1-0$	0.0000002	12
$7-3-2-1$	0.0188	24	$8-3-2-0$	0.0011	24	$11-2-0-0$	0.0000001	12
$6-4-3-0$	0.0133	24	$6-6-1-0$	0.00072	12	$12-1-0-0$	0.000000003	12
$5-4-4-0$	0.0124	12	$8-4-1-0$	0.00045	24	$13-0-0-0$	0.000000000006	4

The 39 hand patterns can by classified into four hand types: balanced hands, three-suiters, two suiters and single suiters. Below table gives the a priori likelihoods of being dealt a certain hand-type.

Hand
 type

Balanced 4-3-3-3, 4-4-3-2, 5-3-3-2
Probability

Patterns

2-suiter $5-4-2-2,5-4-3-1,5-5-2-1,5-5-3-0,6-5-1-1,6-5-2-0,6-6-1-0,7-6-0-0 \quad 0.2902$ 6-3-2-2, 6-3-3-1, 6-4-2-1, 6-4-3-0, 7-2-2-2, 7-3-2-1, 7-3-3-0, 7-4-1-1, 7-4-2-0, 7-5-1-
1 -suiter $\quad 0,8-2-2-1,8-3-1-1,8-3-2-0,8-4-1-0,8-5-0-0,9-2-1-1,9-2-2-0,9-3-1-0,9-4-0-0,10-0.1915$ $1-1-1,10-2-1-0,10-3-0-0,11-1-1-0,11-2-0-0,12-1-0-0,13-0-0-0$
3-suiter 4-4-4-1, 5-4-4-0
0.0423

Alternative grouping of the 39 hand patterns can be made either by longest suit or by shortest suit. Below tables gives the a priori chance of being dealt a hand with a longest or a shortest suit of given length.

| Longest suit | Patterns | Probability |
| :--- | :--- | :--- | :--- |
| 4 card | $4-3-3-3,4-4-3-2,4-4-4-1$ | 0.3508 |
| 5 card | $5-3-3-2,5-4-2-2,5-4-3-1,5-5-2-1,5-4-4-0,5-5-3-0$ | 0.4434 |
| 6 card | $6-3-2-2,6-3-3-1,6-4-2-1,6-4-3-0,6-5-1-1,6-5-2-0,6-6-1-0$ | 0.1655 |
| 7 card | $7-2-2-2,7-3-2-1,7-3-3-0,7-4-1-1,7-4-2-0,7-5-1-0,7-6-0-0$ | 0.0353 |
| 8 card | $8-2-2-1,8-3-1-1,8-3-2-0,8-4-1-0,8-5-0-0$ | 0.0047 |
| 9 card | $9-2-1-1,9-2-2-0,9-3-1-0,9-4-0-0$ | 0.00037 |
| 10 card | $10-1-1-1,10-2-1-0,10-3-0-0$ | 0.000017 |
| 11 card | $11-1-1-0,11-2-0-0$ | 0.0000003 |
| 12 card | $12-1-0-0$ | 0.000000003 |
| 13 card | $13-0-0-0$ | 0.000000000006 |

Shortest suit	Patterns	Probability
2 card	4-3-3-3	0.1054
2-ton	4-4-3-2, 5-3-3-2, 5-4-2-2, 6-3-2-2, 7-2-2-2	0.5380
1-ton	$\begin{aligned} & 4-4-4-1,5-4-3-1,5-5-2-1,6-3-3-1,6-4-2-1,6-5-1-1,7-3-2-1,7-4-1-1,8-2-2-1,8-3-1- \\ & 1,9-2-1-1,10-1-1-1 \end{aligned}$	0.3055
Void	$\begin{aligned} & 5-4-4-0,5-5-3-0,6-4-3-0,6-5-2-0,6-6-1-0,7-3-3-0,7-4-2-0,7-5-1-0,7-6-0-0,8-3-2- \\ & 0,8-4-1-0,8-5-0-0,9-2-2-0,9-3-1-0,9-4-0-0,10-2-1-0,10-3-0-0,11-1-1-0,11-2-0- \\ & 0,12-1-0-0,13-0-0-0 \end{aligned}$	0.0512

Number of possible deals

In total there are $53,644,737,765,488,792,839,237,440,000\left(5.36 \times 10^{\wedge} 28\right)$ different deals possible, which is equal to $52!/(13!)^{4}$. The immenseness of this number can be understood by answering the question "How large an area would you need to spread all possible bridge deals if each deal would occupy only one square millimeter?". The answer is: an area more than a hundred million times the total area of the earth. Obviously, the deals that are identical except for swapping-say-the $\vee 2$ and the $\upharpoonright 3$ would be unlikely to give a different result. To make the irrelevance of small cards explicit (which is not always the case though), in bridge such small cards are generally denoted by an ' x '. Thus, the "number of possible deals" in this sense depends of how many non-honour cards $(2,3, . .9)$ are considered 'indistinguishable'. For example, if 'x' notation is applied to all cards smaller than ten, then the suit distributions A987-K106-Q54-J32 and A432-K105-Q76-J98 would be considered identical. The table below ${ }^{[4]}$ gives the number of deals when various numbers of small cards are considered indistinguishable.

Suit composition	Number of deals
AKQJT9876543x	$53,644,737,765,488,792,839,237,440,000$
AKQJT987654xx	$7.811,544,503,918,790,990,995,915,520$
AKQJT98765xxx	$445,905,120,201,773,774,566,940,160$
AKQJT9876xxxx	$14,369,217,850,047,151,709,620,800$
AKQJT987xxxxx	$314,174,475,847,313,213,527,680$
AKQJT98xxxxxx	$5,197,480,921,767,366,548,160$
AKQJT9xxxxxxx	$69,848,690,581,204,198,656$
AKQJTxxxxxxxx	$800,827,437,699,287,808$
AKQJxxxxxxxxx	$8,110,864,720,503,360$
AKQxxxxxxxxx	$74,424,657,938,928$
AKxxxxxxxxxxx	$630,343,600,320$
Axxxxxxxxxxxx	$4,997,094,488$
xxxxxxxxxxxxx	$37,478,624$

Note that the last entry in the table $(37,478,624)$ corresponds to the number of different distributions of the deck (the number of deals when cards are only distinguished by their suit).

References

1. $\wedge \underline{\underline{b}} \underline{\underline{~}}$ "Mathematical Tables" (Table 4). In

Henry G. Francis, et al., eds., The Official Encyclopedia of Bridge, 5th edition. (ISBN 0943855-48-9)
2. \wedge Richard Pavlicek. "High Card Expectancy." link
3. \wedge Richard Pavlicek. "Against All Odds." link
4. \wedge Counting Bridge Deals, Jeroen Warmerdam

