Printable Version：

Going with the Odds

The title of this lesson often frightens people as it may seem to be a study in mathematics．Not really；you don＇t need an electronic calculator to be a good bridge player．All you need to know are a few＂easy numbers＂and what to expect about suit breaks．The rest is mostly common sense．

Finessing Odds

Most finessing plays require that a particular card be located favorably，i．e．，held by a specific opponent． Assuming the enemy hands are unknown，this is clearly a 50－50 chance－half the time it will succeed；half the time it will fail．
Sometimes a line of play will depend on two or more finesses so it is important to know how to figure the chances．If one finesse is a 50－percent chance，then the chance of two finesses both working（or both failing） is simply $50 \% \times 50 \%$ ．Two finesses will both succeed only 25 percent of the time．At least one of two finesses will succeed 75 percent of the time．
3 NT by South

```
－A 109
マ54
－A Q 654
\＆J 53
```

ゅK 654
PQ J 82
－J 8
$\times 1087$
$\begin{array}{ll} & \text { ゅJ } 2 \\ & \forall \text { A } 97 \\ & \forall 732 \\ \text { Lead：} \uparrow 2 \quad & \text { A K Q } 96\end{array}$
in the following table：

Declarer has eight top tricks．The lead indicates a 4－4 heart division so declarer can afford to give up the lead once．The diamond finesse is a 50 －percent chance while the double finesse in spades offers a 75－percent chance－all you need is for West to have either spade honor．
－K 1063
－K 109
－42
Suit Breaks
As declarer you must know what to expect regarding the division of the outstanding cards in a suit．The most practical cases are listed

Cards Missing	Suit Breaks	
	Most Likely	Next Likely
2	1－1 52\％	2－0 48\％
3	2－1 78\％	3－0 22\％
4	3－1 50\％	2－2 41\％
5	3－2 68\％	4－1 28\％
6	4－2 48\％	3－3 36\％
7	4－3 62\％	5－2 31\％
8	5－3 47\％	4－4 33\％

It is not so important to memorize the percentages，but it is crucial to know which breaks are most likely． Here is a neat memory aid：An odd number of cards usually break as evenly as possible．An even number of cards usually do not break evenly，except in the close case of two cards．

3 NT by South
－ K 32
－AK 732
－AK 4
－A 3
－9 75
PQ 1095
－Q 1053
\＆J 6

－ 64
$\checkmark 6$
－ 8762
Lead：＊3 \＆K 8752

Declarer must decide whether to establish the hearts or the clubs．The club suit requires a 3－3 break（note the lack of entries to succeed against a 4－2 break）；the heart suit requires a $4-3$ break．Win the first trick and lead the $\geqslant 2$ ．Later you will set up the long heart．

Finesse or Suit Break

A common situation for declarer is having to choose between two plays - one involving a finesse, and the other involving a suit break. In most cases all you need to know is whether the required suit break is a favorite. If so, then it has to be better than a 50% finesse; you don't really care how much better.
$6 \vee$ by South

After winning the \star A and leading a heart to the ace, declarer can be sure of 11 tricks - six hearts, three side aces and two club ruffs. The 12th trick might come from the spade finesse or by attempting to establish the long spade. Which play is better?

The spade finesse is clearly a 50-percent chance. Establishing the long spade requires a $4-3$ spade break (62 percent) and four entries to dummy (three to ruff spades and one to reach the last winner). Are the entries available? Yes, declarer can use the $\uparrow \mathrm{A}, \vee \mathrm{J}$ and two club ruffs in that order.

The recommended play is actually even better. Declarer will also succeed against 5-2 breaks when the king is doubleton. For
Lead: \downarrow Q $\& 2$ math buffs this extra chance can be calculated as 31 percent (the probability of a 5-2 break) times $2 / 7$ (the ratio for the 5 -to- 2 odds against the king doubleton) or about 9 percent. This raises the total chance of establishing a spade trick to 71 percent.

